
Data sheet acquired from Harris Semiconductor SCHS140E

March 1998 - Revised October 2003

Features

- Asynchronous Set and Reset
- Schmitt Trigger Clock Inputs
- Typical f_{MAX} = 54MHz at V_{CC} = 5V, C_L = 15pF, T_A = 25^oC
- Fanout (Over Temperature Range)
 - Standard Outputs 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55^oC to 125^oC
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, I_I \leq 1µA at V_{OL}, V_{OH}

Pinout

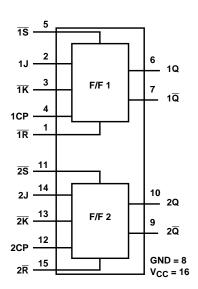
CD54HC109, CD74HC109, CD54HCT109, CD74HCT109

Dual J-K Flip-Flop with Set and Reset Positive-Edge Trigger

Description

The 'HC109 and 'HCT109 are dual J- \overline{K} flip-flops with set and reset. The flip-flop changes state with the positive transition of Clock (1CP and 2CP).

The flip-flop is set and reset by active-low \overline{S} and \overline{R} , respectively. A low on both the set and reset inputs simultaneously will force both Q and \overline{Q} outputs high. However, both set and reset going high simultaneously results in an unpredictable output condition.


Ordering Information

PART NUMBER	TEMP. RANGE (^o C)	PACKAGE			
CD54HC109F3A	-55 to 125	16 Ld CERDIP			
CD54HCT109F3A	-55 to 125	16 Ld CERDIP			
CD74HC109E	-55 to 125	16 Ld PDIP			
CD74HC109M	-55 to 125	16 Ld SOIC			
CD74HC109MT	-55 to 125	16 Ld SOIC			
CD74HC109M96	-55 to 125	16 Ld SOIC			
CD74HCT109E	-55 to 125	16 Ld PDIP			
CD74HCT109M	-55 to 125	16 Ld SOIC			
CD74HCT109MT	-55 to 125	16 Ld SOIC			
CD74HCT109M96	-55 to 125	16 Ld SOIC			

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

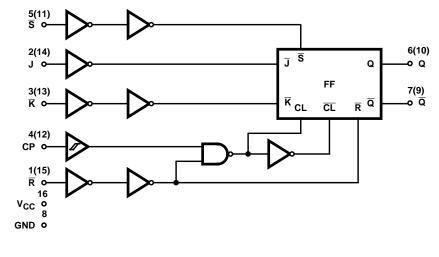
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © 2003, Texas Instruments Incorporated

Functional Diagram

TRUTH TABLE

		OUTPUTS					
S	R	СР	J	ĸ	Q	Q	
L	Н	Х	Х	Х	Н	L	
Н	L	Х	Х	Х	L	н	
L	L	Х	Х	Х	H (Note 1)	H (Note 1)	
Н	Н	↑	L	L	L	н	
Н	Н	↑	Н	L	То	ggle	
Н	Н	↑	L	Н	No Change		
Н	Н	↑	Н	Н	н	L	
Н	Н	L	Х	Х	No Change		

H= High Level (Steady State)


L= Low Level (Steady State)

X= Don't Care ↑= Low-to-High Transition

NOTE:

1. Unpredictable and unstable condition if both \overline{S} and \overline{R} go high simultaneously

Logic Diagram

Absolute Maximum Ratings

DC Supply Voltage, V _{CC} 0.5V to 7V DC Input Diode Current, I_{IK}
For $V_{I} < -0.5V$ or $V_{I} > V_{CC} + 0.5V$
DC Drain Current, per Output, I _O
For -0.5V < V _O < V _{CC} + 0.5V±25mA
DC Output Diode Current, IOK
For $V_0 < -0.5V$ or $V_0 > V_{CC} + 0.5V$
DC Output Source or Sink Current per Output Pin, IO
For $V_0 > -0.5V$ or $V_0 < V_{CC} + 0.5V$ ±25mA
DC V _{CC} or Ground Current, I _{CC} ±50mA

Operating Conditions

Temperature Range, T _A 55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types
HCT Types4.5V to 5.5V
DC Input or Output Voltage, VI, VO 0V to VCC
C _P Input Rise and Fall Time, t _r , t _f
2V
4.5V 1.0ms (Max)
6V
Input Rise and Fall Time (All Inputs Except C _P), t _r , t _f
2V
4.5V 500ns (Max)
6V

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (^o C/W)
E (PDIP) Package	67
M (SOIC) Package	73
Maximum Junction Temperature (Hermetic Package or I	
Maximum Junction Temperature (Plastic Package)	
Maximum Storage Temperature Range6	65°C to 150°C
Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. The package thermal impedance is calculated in accordance with JESD 51-7

		TEST CONDITIONS			25 ⁰ C			-40 ⁰ C TO 85 ⁰ C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input V _{IH}	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
			6	4.2	-	-	4.2	-	4.2	-	V	
Low Level Input VIL	V _{IL} -	-	2	-	-	0.5	-	0.5	-	0.5	V	
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output	V _{OH}	V _{IH} or	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Voltage CMOS Loads		VIL		4.5	4.4	-	-	4.4	-	4.4	-	V
				6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads		-4	4.5	3.96	-	-	3.84	-	3.7	-	V	
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V

DC Electrical Specifications

CD54HC109, CD74HC109, CD54HCT109, CD74HCT109

DC Electrical Specifications (Continued)

			ST ITIONS			25 ⁰ C		-40°C 1	ГО 85 ⁰ С	-55°C T	O 125ºC	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	ТҮР	MAX	MIN	MAX	MIN	MAX	
Low Level Output	V _{OL}	V _{IH} or	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads		VIL		4.5	-	-	0.1	-	0.1	-	0.1	V
				6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	4	-	40	-	80	μA
HCT TYPES										•	•	
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	VIL	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} and GND	-	5.5	-		±0.1	-	±1	-	±1	μA
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	4	-	40	-	80	μΑ
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	∆I _{CC} (Note 3)	V _{CC} - 2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μA

NOTE:

3. For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS						
All	0.3						

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360µA max at 25°C.

CD54HC109, CD74HC109, CD54HCT109, CD74HCT109

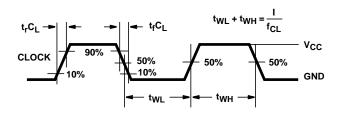
Prerequisite For Switching Specifications

		TEST	v _{cc}		25°C		-40 ^о С Т	O 85°C	-55°C T	O 125 ⁰ C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	ТҮР	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES							-	-			
Setup Time J, \overline{K} , to CP	t _{SU}	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
Hold Time J, \overline{K} , to CP	t _H	-	2	5	-	-	5	-	5	-	ns
			4.5	5	-	-	5	-	5	-	ns
			6	5	-	-	5	-	5	-	ns
Removal Time \overline{R} , \overline{S} , to CP	t _{REM}	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
Pulse Width CP, \overline{R} , \overline{S}	t _W	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
CP Frequency	f _{MAX}	-	2	6	-	-	5	-	4	-	MHz
			4.5	30	-	-	25	-	20	-	MHz
			6	35	-	-	29	-	23	-	MHz
HCT TYPES	-										
Setup Time J, \overline{K} to CP	ts∪	-	4.5	18	-	-	23	-	27	-	ns
Hold Time J, \overline{K} to CP	t _H	-	4.5	3	-	-	3	-	3	-	ns
Removal Time \overline{R} , \overline{S} , to CP	^t REM	-	4.5	18	-	-	23	-	27	-	ns
Pulse Width CP, \overline{R} , \overline{S}	t _W	-	4.5	18	-	-	23	-	27	-	ns
CP Frequency	f _{MAX}	-	4.5	27	-	-	22	-	18	-	MHz

Switching Specifications Input t_r , $t_f = 6ns$

	TEST	Vcc		25 ⁰ C		-40°C TO 85°C		-55°C TO 125°C		
SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
-								-		
t _{PLH} , t _{PHL}	$C_L = 50 pF$	2	-	-	175	-	220	-	265	ns
	C _L = 50pF	4.5	-	-	35	-	44	-	53	ns
	C _L = 15pF	5	-	14	-	-	-	-	-	ns
	C _L = 50pF	6	-	-	30	-	37	-	45	ns
t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	120	-	150	-	180	ns
	C _L = 50pF	4.5	-	-	24	-	30	-	36	ns
	C _L = 15pF	5	-	9	-	-	-	-	-	ns
	C _L = 50pF	6	-	-	20	-	26	-	31	ns
t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	155	-	195	-	235	ns
	C _L = 50pF	4.5	-	-	31	-	39	-	47	ns
	C _L = 15pF	5	-	13	-	-	-	-	-	ns
	C _L = 50pF	6	-	-	26	-	33	-	40	ns
	t _{PLH} , t _{PHL}	$\begin{tabular}{ c c c } $ SYMBOL $ $ CONDITIONS $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	$\begin{tabular}{ c c c c } \hline $SYMBOL & $CONDITIONS & VV \\ \hline $VPLH$, $tPHL & $C_L = 50pF & 2 \\ \hline $C_L = 50pF & 5 \\ \hline $C_L = 50pF & 6 \\ \hline $tPLH$, $tPHL & $C_L = 50pF & 2 \\ \hline $C_L = 50pF & 4.5 \\ \hline $C_L = 50pF & 5 \\ \hline $C_L = 50pF & 6 \\ \hline $tPLH$, $tPHL & $C_L = 50pF & 6 \\ \hline $tPLH$, $tPHL & $C_L = 50pF & 6 \\ \hline $tPLH$, $tPHL & $C_L = 50pF & 6 \\ \hline $tPLH$, $tPHL & $C_L = 50pF & 2 \\ \hline $C_L = 50pF & 4.5 \\ \hline $C_L = 15pF & 5 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline $YMBOL$ & $CONDITIONS$ & (V) & MIN \\ \hline $VPLH$, $tPHL$ & $C_L = 50pF$ & 2 & $-$ \\ \hline $C_L = 50pF$ & 4.5 & $-$ \\ \hline $C_L = 50pF$ & 6 & $-$ \\ \hline $C_L = 50pF$ & 2 & $-$ \\ \hline $C_L = 50pF$ & 4.5 & $-$ \\ \hline $C_L = 50pF$ & 4.5 & $-$ \\ \hline $C_L = 50pF$ & 6 & $-$ \\ \hline $C_L = 50pF$ & 6 & $-$ \\ \hline $C_L = 50pF$ & 6 & $-$ \\ \hline $C_L = 50pF$ & 6 & $-$ \\ \hline $C_L = 50pF$ & 2 & $-$ \\ \hline $C_L = 50pF$ & 2 & $-$ \\ \hline $C_L = 50pF$ & 4.5 & $-$ \\ \hline $C_L = 50pF$ & 4.5 & $-$ \\ \hline $C_L = 50pF$ & 4.5 & $-$ \\ \hline $C_L = 15pF$ & $-$ \\ \hline C_L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c } \mbox{SYMBOL} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SYMBOL CONDITIONS VCC (V) MIN TYP MAX MIN MAX MIN t_{PLH}, t_{PHL} $C_L = 50pF$ 2 - - 175 - 220 - $C_L = 50pF$ 4.5 - - 35 - 44 - $C_L = 50pF$ 5 - 14 - - - - $C_L = 50pF$ 6 - - 30 - 37 - t_{PLH}, t_{PHL} $C_L = 50pF$ 2 - - 120 - 150 - t_{PLH}, t_{PHL} $C_L = 50pF$ 2 - - 120 - 150 - t_{PLH}, t_{PHL} $C_L = 50pF$ 4.5 - 24 - 30 - $t_L = 50pF$ 5 - 9 - - - - $t_L = 50pF$ 6 - - 20 - 26 - $t_L = 50pF$	SYMBOL CONDITIONS VCC (V) MIN TYP MAX MIN MAX MIN MAX t_{PLH}, t_{PHL} $C_L = 50pF$ 2 - - 175 - 220 - 265 $C_L = 50pF$ 4.5 - - 35 - 44 - 53 $C_L = 50pF$ 5 - 14 - - - - - $C_L = 50pF$ 6 - - 300 - 37 - 45 t_{PLH}, t_{PHL} $C_L = 50pF$ 2 - - 120 - 150 - 180 $C_L = 50pF$ 4.5 - 24 - 30 - 36 $C_L = 50pF$ 5 - 9 -

CD54HC109, CD74HC109, CD54HCT109, CD74HCT109


		TEST	v _{cc}		25 ⁰ C		-40 ^о С Т	O 85°C	-55°С Т	0 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	185	-	230	-	280	ns
$\overline{R} \to Q$		C _L = 50pF	4.5	-	-	37	-	46	-	56	ns
		C _L = 15pF	5	-	15	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	31	-	39	-	48	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	170	-	215	-	255	ns
$\overline{R} \to \overline{Q}$		C _L = 50pF	4.5	-	-	34	-	43	-	51	ns
		C _L = 15pF	5	-	14	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	29	-	37	-	43	ns
Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
		C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
		C _L = 50pF	6	-	-	13	-	16	-	19	ns
Input Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF
CP Frequency	f _{MAX}	C _L = 15pF	5	-	60	-	-	-	-	-	MHz
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	-	5	-	30	-	-	-	-	-	pF
HCT TYPES											
Propagation Delay, CP \rightarrow Q, \overline{Q}	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	40	-	50	-	60	ns
$CP \rightarrow Q, Q$		C _L = 15pF	5	-	17	-	-	-	-	-	ns
Propagation Delay, $\overline{S} \rightarrow Q$	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	30	-	38	-	45	ns
$S \rightarrow Q$		C _L = 15pF	5	-	12	-	-	-	-	-	ns
Propagation Delay, $\overline{S} \rightarrow \overline{Q}$	t _{PLH} , t _{PHL}	$C_L = 50 pF$	4.5	-	-	45	-	56	-	68	ns
$S \rightarrow Q$		C _L = 15pF	5	-	19	-	-	-	-	-	ns
Propagation Delay,	t _{PLH} , t _{PHL}	$C_L = 50 pF$	4.5	-	-	45	-	56	-	68	ns
$\overline{R} \to Q$		C _L = 15pF	5	-	19	-	-	-	-	-	ns
Propagation Delay,	t _{PLH} , t _{PHL}	$C_L = 50 pF$	4.5	-	-	37	-	46	-	56	ns
$\overline{R} \to \overline{Q}$		C _L = 15pF	5	-	15	-	-	-	-	-	ns
Transition Time (Figure 5)	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF
CP Frequency	f _{MAX}	CL = 15pF	5	-	54	-	-	-	-	-	MHz
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	-	5	-	33	-	-	-	-	-	pF

NOTES:

4. $C_{\mbox{PD}}$ is used to determine the dynamic power consumption, per flip-flop.

5. $P_D = C_{PD} V_{CC}^2 f_i + \Sigma C_L f_o$ where f_i = input frequency, f_o = output frequency, C_L = output load capacitance, V_{CC} = supply voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 7. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

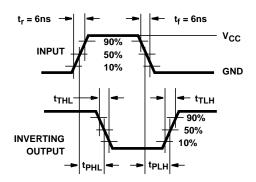
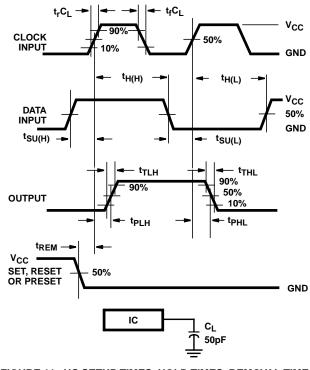
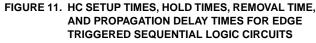
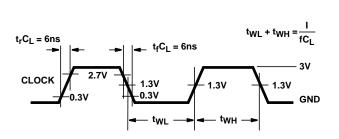
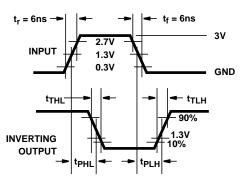
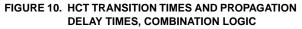
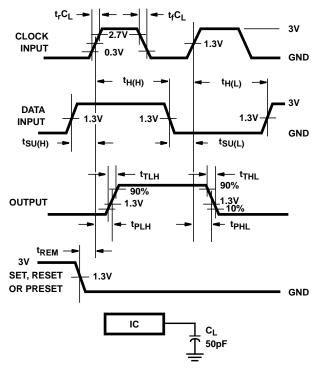





FIGURE 9. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC







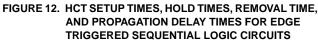

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 8. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

TEXAS INSTRUMENTS www.ti.com

18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9070101MEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
CD54HC109F3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
CD54HCT109F3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
CD74HC109E	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74HC109EE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74HC109M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC109MTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109E	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74HCT109EE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74HCT109M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109MTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT109MTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

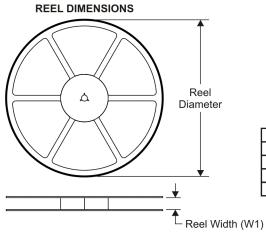
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

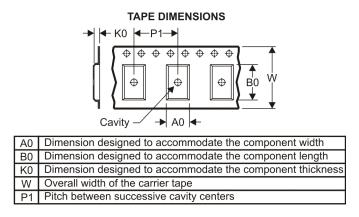
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

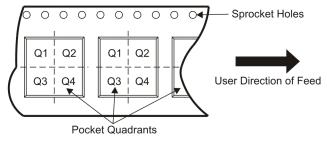
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

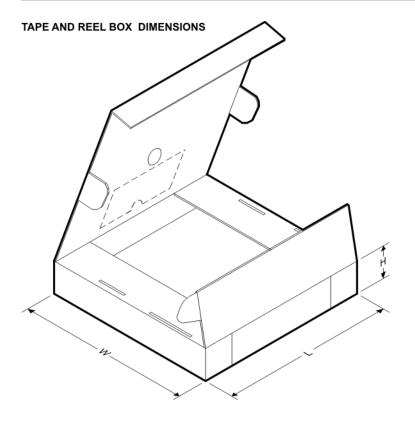

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC109M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT109M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

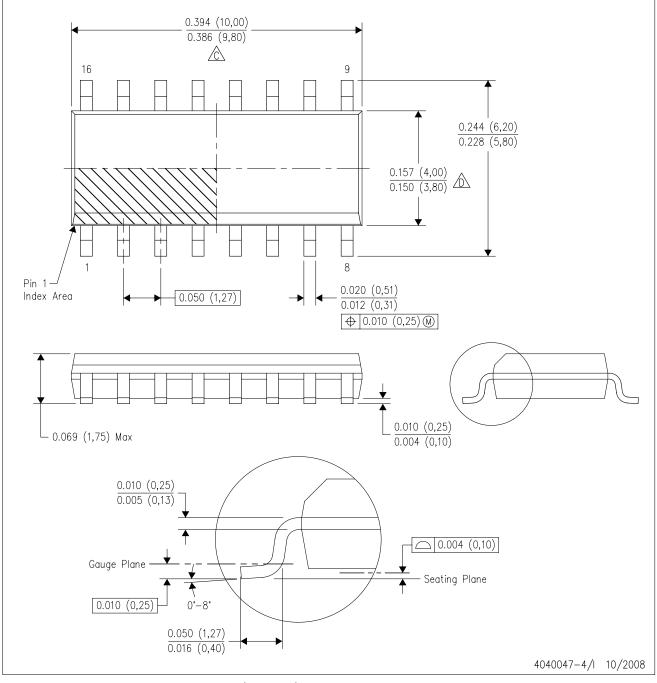
19-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC109M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HCT109M96	SOIC	D	16	2500	333.2	345.9	28.6

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated